3.9.1 \(\int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) \, dx\) [801]

Optimal. Leaf size=150 \[ \frac {(a+b) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

[Out]

-1/2*(a+b)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)-1/2*(a+b)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2
)-1/4*(a-b)*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/4*(a-b)*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(
1/2))/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3754, 3615, 1182, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {(a+b) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \text {ArcTan}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d}-\frac {(a-b) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {(a-b) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x]),x]

[Out]

((a + b)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((a + b)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]
)/(Sqrt[2]*d) - ((a - b)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) + ((a - b)*Log[1 +
Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3754

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \sqrt {\cot (c+d x)} (a+b \tan (c+d x)) \, dx &=\int \frac {b+a \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=\frac {2 \text {Subst}\left (\int \frac {-b-a x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {(a-b) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}-\frac {(a+b) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=-\frac {(a-b) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {(a-b) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {(a+b) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}-\frac {(a+b) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 d}\\ &=-\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {(a+b) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}\\ &=\frac {(a+b) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.24, size = 164, normalized size = 1.09 \begin {gather*} \frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (3 \sqrt {2} a \left (-2 \text {ArcTan}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )+2 \text {ArcTan}\left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )-\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right )+8 b \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\tan ^2(c+d x)\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{12 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x]),x]

[Out]

(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(3*Sqrt[2]*a*(-2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] + 2*ArcTan[1 +
Sqrt[2]*Sqrt[Tan[c + d*x]]] - Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] + Log[1 + Sqrt[2]*Sqrt[Tan[c
+ d*x]] + Tan[c + d*x]]) + 8*b*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2)))/(12*d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 14.32, size = 492, normalized size = 3.28

method result size
default \(-\frac {\sqrt {\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \left (i \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a +i \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b -i \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a -i \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b -2 a \EllipticF \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )+\EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a -\EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b +\EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a -\EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b \right ) \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {2}}{2 d \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )}\) \(492\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(cos(d*x+c)/sin(d*x+c))^(1/2)*(-1+cos(d*x+c))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c
)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*(I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))
/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a+I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2
*I,1/2*2^(1/2))*b-I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a-I*Ellipt
icPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b-2*a*EllipticF((-(cos(d*x+c)-1-sin(
d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*
2^(1/2))*a-EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b+EllipticPi((-(cos
(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a-EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*
x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b)/sin(d*x+c)^2/cos(d*x+c)*(cos(d*x+c)+1)^2*2^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 128, normalized size = 0.85 \begin {gather*} -\frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (a - b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (a - b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*(a + b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a + b)*arctan(-1/2*s
qrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*(a - b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1
) + sqrt(2)*(a - b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c)),x)

[Out]

Integral((a + b*tan(c + d*x))*sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 5.45, size = 86, normalized size = 0.57 \begin {gather*} \frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {cot}\left (c+d\,x\right )}\right )}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {cot}\left (c+d\,x\right )}\right )}{d}+\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {cot}\left (c+d\,x\right )}\right )\,1{}\mathrm {i}}{d}+\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {cot}\left (c+d\,x\right )}\right )\,1{}\mathrm {i}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x)),x)

[Out]

((-1)^(1/4)*a*atanh((-1)^(1/4)*cot(c + d*x)^(1/2)))/d - ((-1)^(1/4)*a*atan((-1)^(1/4)*cot(c + d*x)^(1/2)))/d +
 ((-1)^(1/4)*b*atan((-1)^(1/4)*cot(c + d*x)^(1/2))*1i)/d + ((-1)^(1/4)*b*atanh((-1)^(1/4)*cot(c + d*x)^(1/2))*
1i)/d

________________________________________________________________________________________